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Delayed-feedback control of spatial bifurcations and chaos in open-flow models
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A delayed-feedback control scheme is presented for suppressing spatial bifurcation and chaotic behavior in
open-flow models. It is shown that spatial bifurcation and chaotic behavior never occur when the delayed-
feedback controller is designed such that the following two conditions are satisfied: all the poles of the
transfer function of each site are inside a unit circle andthenorm of the transfer function is less than 1. We
provide a simple systematic procedure for design of the delayed-feedback controller. It is confirmed that our
theoretical results agree well with the numerical simulations.

PACS numbses): 05.45.Gg, 07.05.Dz, 47.27.Rc, 47.62)

I. INTRODUCTION occurs when théd,. norm is less than 1.
. . . . . From the practical point of view, spatial bifurcation and
) Controllmg chaos has been actively mv_estlgated n thechaotic behavior in real open-flow systems, such as turbulent
field of nonlinear sciencgl]. Ott, Grebogi, and Yorke popavior in pipe flows, are undesirable because of compli-
(OGY) proposed a method which stabilizes chaotic motiong,ateq and unpredictable oscillations. Therefore, we notice
onto desired unstable periodic orbittPOs [2]. The  that suppression of spatial bifurcation and chaotic behavior
delayed-feedback contr¢DFC) method proposed by Pyra- || pe an important subject. The DDFC method can sup-
gas(3] does not require a reference signal corresponding t@ress chaotic behavior in the one-way open CML under a
the desired UPO. The DFC method has been widely used faqjpiseless environmerjtl5]. However, it has the following
several real systemld], since it is a practical scheme for three disadvantages:(1) it is not suitable for suppression of
experimental situations. The stability of the DFC method forchaotic behavior under a noisy environmefg) it cannot
simple low-dimensional chaotic systems has been analyzeslppress spatial bifurcation, af) it cannot stabilize a class
[4-7], and a discrete-time version of the method was examef open-flow models due to the inherent weak point of the
ined[8—13]. In recent years, investigations of spatiotemporalDFC [8—13]. The present paper modifies the DDFC method
chaotic behavior and its control have attracted much intere¢p overcome the above disadvantages. The DDFC method
[14—18. Konishi, Hirai, and Kokamg15] proposed a decen- [15] usesstatic controllers which guarantee only the internal
tralized delayed-feedback contrdDDFC) for a one-way stability of each site; on the contrary, our modified method
open coupled map lattidgl9—21]. They obtained a stability usesdynamiccontrollers in order that each site is internally
condition for the control system to be stable. In order tostable and théd.. norm of each site is less than 1. Further-
design robust local controllers for uncertain parameter inforimore, we give a systematic procedure for the design of dy-
mation, they gave a simple procedure which does not deperigamic controllers and show that the theoretical results agree
on the system size; however, this procedure takes into agvell with numerical simulations.
count only the internal stability of each site, but not the noise
propagation in the lattice sites.

The dynamics of spatially extended nonlinear systems
consisting of coupled low-dimensional nonlinear maps has Let us consider a one-way open CML
created considerable intereg22]. Coupled map lattices
(CMLs) have been particularly investigated by many re- xi(n+1)=(1—g)f[xi(n)]+ef[x_1(n)] (i=12,...),
searchers, since they exhibit a wide variety of novel and (1)
complex spatiotemporal behaviors. The CMLs can be classi-
fied into sever{:l_l types according o the conn_ections .angvherexi(n) e R is the system state of th¢h lattice site at
boundary conditions. The one-way open CML is a typical,. . . ;

- : . timen,e €[0,1) is the coupling strength, arfldR—R is the
open-flow mode[19-21]. Spatial bifurcations in the CML local linear map. We assume that the uoper boundar
were discovere19], and have been studied in detail in nu- oca’ noniinea P, - . upper | y

. . ; . ; Xo(n) is fixed atxy(n)=x;, wherex; is the fixed point of
merical simulations[20,21. Yamaguchi investigated the the local magf, that is, x;= f[x]. The steady state of the
phenomenon of spatial bifurcations in the CML and derivedCML ia : . - y
the bifurcation condition§23]. Very recently, the spatial bi-
furcation condition and its mechanism in open-flow models
were clarified by theH..-norm concept of transfer function ~ [X1(N)  Xa(n) xa(n) -17=[x; x; x; -]".

[24]. Referenceg24] showed that spatial bifurcation never 2

Il. STABILITY OF ONE-WAY OPEN CML

Assume that the orbits at the upper sites., 1,2. .. ,(i
*Author to whom correspondence should be addressed. FAX:—2)th lattice sitefhave already converged to the fixed point
+81-722-54-9907. Electronic address: konishi@ecs.ees.osakafli-e., Xj(n)=x; for j=1,2,...,{—2)]. If the (i—1)th and
u.ac.jp
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ith lattice site stateg;_;(n) andx;(n) are in the neighbor-
hood of the fixed poink;, the linearized dynamics of théh
lattice site is given as

yi(n+1)=(1-g)Ayi(n)+eAy;_4(n), ()
where
Yi(n)=xi(n)=X¢, Yi—1(n)=X;j_1(N) — X,
_&f(x)
x|y

The Z transformg 25] of y;(n+1), y;(n), andy;_,(n) are
given, respectively, by

Zlyi(n+1)]=zYi(2), Zlyi(n)]=Yi(2),
Zlyi-1(N)]=Y;-1(2).
Taking the Z transforms of both sides of E3), we obtain
zY(2)=(1—¢e)AY{(2) +teAY;_1(2).
The relation ofY;(z) andY;_,(z) is described as
Yi(2)=G(2)Yi-1(2), 4
where the transfer functio®(z) is

e\

C2)= —1=en

©)

Let us recall the definitions dfl,, norm and of temporally
spatially stability given inf24].

Definition 1[26]. Assume that a transfer functidn(z)
has no poles outside of unit circle on complex plath,
norm of the transfer functiof (z) is given by

IF(2)].== max |F(el)].
6e[0,2m]

Definition 2[24]. The spatiotemporal stability of steady

state (2) in one-way open CML(1) is classified into the
following three types:

(i) If G(z) has a pole outside of the unit circle, it is tem-

porally unstablgTU).

(ii) If G(2) has a pole inside of the unit circle and tHe
norm of G(2) is less than Xi.e., |G(2)]..<1), it is tempo-
rally spatially stablgTSS.

(iii ) If G(2) has a pole inside of the unit circle and tHe
norm of G(z) is greater than l.e.,|G(2)||.>1), it is tem-
porally stable and spatially unstalféSSU.

It is obvious that spatial bifurcation occurs in the one-way

open CML only when steady statg) is TSSU. This is be-
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FIG. 1. One-way open CML with the decentralized controllers.
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Ill. STABILIZATION OF THE STEADY STATE

We notice that spatial bifurcation and chaotic behavior are
observed in the one-way open CML when steady q@tés
TSSU or TU.

In order to suppress spatial bifurcation and chaotic behav-
ior, we add a control term;(n) to the right-hand side of Eq.

(1):
Xj(n+1)=(1—¢)f[x;(n)]+ef[x_1(n)]+u;(n)
(i=12,...). (6)
The control signali;(n) is given by
wi(n+1)=kawi(n) +Kkp[x(n) = xi(n—1)],
ui(n) =kew;i(n) + kg xi(n) —xi(n—1)], @)

where k, .k, ,k;,kqe R are the feedback gains. Since the
variable w;(n) e R is the internal state variable of thé¢h
controller at timen, it does not represent any physical values.
In the field of control theory, most of the controllers usually
employ such a variable to extend the dynamics of the con-
trollers. We remark that controlld7) never changes the lo-
cation of steady stat€2). Figure 1 illustrates the one-way
open CML with controller(7). This paper employs ay-
namicdelayed-feedback controll€r) instead of sstaticcon-
troller (i.e., k,=k,=k.=0) used in[15]. Controller(7) can

be regarded as a decentralized dynamic delayed-feedback
controller proposed if27,28. The resulting closed-loop sys-
tem consisting of systeri®) and controller(7) can be linear-
ized as

yin+1)] | (me)Atke ke Kol ry ()
yi(n) |= 1 0 0 {yi(n—l)]
wi(n+1) K —kp koL Wi(n)
e\
+| 0 lyi_a(n). ®)
0
The relation betweenY,(z):=Z[y;(n)] and Y,_.(2)

:=Z[y;_1(n)] of system(8) is

Yi(2)=G(2)Y,_1(2). 9

cause, if Steady Stafé) is TSSU, a tlny external noise in real The transfer functiorg(z) is given as
systems or round-off error on computers at the upper sites

significantly disturbs the lower sites. Hence the lower lattice _

site statex;(n) cannot keep staying oxy . Furthermore, we

N(2)

G(Z)=m,

can observe chaotic behaviors in the CML when steady state
(2) is TU. The main purpose of this paper is to provide awhere

control scheme which changes the stability of steady $Pate

from TSSU/TU to TSS.

N(z)=z(z—k,)eA,
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D(2)=2%—{(1— &) A +Kq+ Kg} 22+ {kg+ Kokg— Kpke
+Ky(1— &) A}z+ Kok —KaKg .

0.8f

)
D=
e

P
T
2=

We notice that relatiorf9) corresponds to Ed4). Since the
difference between Eq$9) and(4) is only the degree of the o . .
transfer functionsG(z) and G(z), definition 2 can be ex- fo° 1g‘ne Number | 107
tended to the controlled CML consisting E@6) and (7).

Definition 3 The spatiotemporal stability of steady state @
(2) in the CML controlled by Eqgs(7) is classified into the
following three types.

(i) If G(2) has at least one pole outside of the unit circle,
it is TU.

(ii) If all the poles ofG(z) are inside of the unit circle and o5l
[G(2)]..<1, itis TSS. e

(iii) If all the poles ofG(z) are inside of the unit circle p — [rad]
and||G(2)||..>1, it is TSSU. ”

In general, it is not easy to determine the feedback gains
such that steady stat@) becomes TSS. This paper shall FIG. 2. Spatial bifurcation and gain diagrams without control.
provide a simple systematic procedure how to determine théhe parameters are fixed at3.2,6=0.55.(a) Spatial bifurcation
feedback gains for suppression of spatial bifurcation and fofiagram.(b) Gain diagram ofG(z).
stabilization of chaotic behavior. If we choose the feedback

IG(e®)]

gains as (3) If |[eA(1+ky)|<1, then go to sted5): otherwise,
2h 2 stop.
K=k — (1—e)A k= — (1—¢)°A (4) If |eA(1—k,)|<1, then go to stef5): otherwise,
AT (1—g)A—1" "¢ T (1-g)A-1" stop.
(10) (5) The feedback gains are chosen as Efj6).
L After step (5), the steady state of the controlled CML
then the transfer functio(z) can be reduced to becomes TSS. It should be noted that even if we cannot
B eAZ(z—k) reach step5), the steady state may become TSS by gains
G(z)= Ta (11  other than Eqs(10).

The closed-loop system consisting of E¢®. and(7) shows
deadbeat behavior, since all the pole<zgiz) are zero. The
H, norm of G(2) is

IV. NUMERICAL EXAMPLES
A. Suppression of spatial bifurcation
We use the logistic maf{x) =ax(1—x) as the local non-

_ Aelf(elf—k i - e ; _ 1\ia-
IG(2).= max € ( a) linear map. The fixed point is described @as=(a—1)/a;

9<[0.27] e3? thus, we obtainA=2—a. The system parameter and cou-
pling strength are fixed ata(e)=(3.2,0.55). The system
=|eA| max |eiﬂ_ Kal size isN=50. Figure 2a) shows the spatial bifurcation dia-
0e[0,27] gram without control. In order to neglect the transient behav-
ior, x;(n) is plotted forn=49980, 4998]1. . .,50000. Ini-
=leA| max ki—2k,cosf+1. tial conditions arex;(0)=x; for i=1,2,...500. A tiny
0e10.2m] random noise is added to the upper boundary sigén)

=X;+10 °9,, wheren, e[ —1,+ 1] is the uniform random
value. As one can see, we can observe spatial bifurcation in
leA(1+k,)| if ka=0, the CM.L. The gain diagram of the transfer fun_cti@ﬁz) is_
shown in Fig. 2b). It can be seen that the maximum gain—
leA(1—kg)| if k,=O. that is, |G(z)|..—is greater than 1, and the pole 6f(z)
o ) _ ) _ [i.e.,z=(1—¢)A] is inside of the unit circle. Since steady
Spatial blfurcatlon_and chaotic behavior do not occur in thestate(Z) is TSSU, we can see the spatial bifurcation as shown
CML only when ||G(2)|.<1. From the above results, we in Fig. 2(a).
can provide a systematic procedure for design of the feed- Now we shall suppress the spatial bifurcation using dy-

Hence, theH,, norm ofE(z) can be given by

IG(2)]l..=

back gains namic delayed-feedback contr@). It is undesirable for the
(1) The information(A,e) is known and the gairk, is  control signal to be large, since a large signal may make the
estimated from Eq(10). control system fall into a divergence regime. In order to

(2) If k=0, then go to ste3); if k,<0, then go to step avoid the divergence, we employ a local watcher for every
(4). site[15]. Each local watcher is described as
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FIG. 3. Spatial bifurcation and gain diagrams with control. The "
0.55

parameters are the same as in Fig(&. Spatial bifurcation dia-
gram.(b) Gain diagram ofG(z).

ui(n) if ui(n)|<w,

W= 0 i )|,
00
where the threshold is a small positive value. The param- n——
eters and the noise are the same as Fig. 2. The feedback gair
are chosen by our systematic proceduiiee., k,=Kky (b)

20'350_6g’g°: k.d: _0'18?]35)' ;’he Wa_tclhg; thre_sholdd_ IS FIG. 5. Space-time plots of the one-way open coupled logistic
set asy="u. 1. Figure &) shows the spat!a lfurcation dia- map lattice controlled bya) static controller k,=k,=k.=0, kg4
gram with control. The control starts at time=10000. We  _q gy and (b) dynamic controller K,=k,=0.6322, k.=kq
cannot see spatial bifurcation in the CML. The gain diagram. ; ogeg). The parameters are set @s3.91, £=0.1, and v
of the transfer function of the closed-loop syst&\z) is =0.05.
shown in Fig. 8b). Since||G(z)|.. is less than 1 and the
poles of G(z) are inside the unit circle, the steady state isparameter and coupling strength are fixed at,sf
TSS. Figure 4 shows the spatiotemporal behavior of the con=(3.91,0.1). The system size ié=100. The fixed point is
trolled CML. The parameters, noise, and gains are the samg =0.7442. From definition 2, we notice that steady staje
as Fig. 3. The control starts at tinne=200. We can observe s TU. The initial conditions and the tiny random noise are
that site states;(n) converge orx; in the order of the site  the same as Fig. 3. Spatiotemporal chaotic behavior occurs in
numberi. the CML without control. Now we shall try to stabilize the
chaotic behavior by the following controllers: the static
B. Stabilizing chaotic behavior delayed-feedback controller proposed 1%] [i.e., controller
Let us consider two numerical examples. First of all, we(7) With ka=k,=k.=0] and dynamic delayed-feedback con-

use a logistic map as the local nonlinear map. The systerffoller (7). The static controller is set ag=k,=k.=0 and
ky=0.9, which satisfies the stability condition[ih5]. On the

.~ Control Start other hand, the feedback gains of dynamic contrdllerare

| ] chosen by our systematic procedure in Sec(ild., k,=k,
a0l = 0.75 =0.6322,k.=kyq=1.0868). The watcher threshold is set as
0.65 v=0.05. Figure ) shows the spatiotemporal behavior of
n 0.55 the CML controlled by the static controller. The control

Site i

starts at timen=1000. The upper sites stategn) converge
on Xs; however, the lower sites behave chaotically. This is
because the stability analysis|[ib5] does not consider noise
propagation. Figure () is the spatiotemporal behavior of
0 1000 the CML controlled by dynamic controllér). It can be seen
n—mmm——> that all sites converge on the fixed pokjtin the order of the
FIG. 4. Space-time plot of the controlled one-way open cmL Site numberi. The reason for our successful stabilization is

with logistic maps. The parameters, noise, and gains are the same {t@t the feedback gain&{,ky k¢ ,kg) of dynamic controller
in Fig. 3. (7) are designed such that th, norm of G(z) is less than
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1. In other words, they are designed in consideration of the .~ Control Start
noise propagation in the lattice sites.

For the second example, we use a piecewise linear map
f(x)=a(x+1) if x<—-0.5, ax if |x|<0.5, anda(x—1) if
0.5=x, wherea is the system parameter. The fixed point is
x¢=0; thus, we obtainA=a. The system parameter and
coupling strength are fixed aa(e)=(2.5,0.1). The system
size isN=100. SinceA is greater than 1, we notice that the
original DDFC (i.e., static delayed-feedback conjrolever
stabilizes steady stat®) due to the inherent weak point of
the DFC(see Fig. 1 irf15]). On the contrary, foA =2.5 and
£=0.1, we can reach stgp) in our controller-design proce-
dure. This implies that the controller designed our procedure
can stabilize steady sta(8). Figure 6 shows the space-time
diagram of the controlled coupled piecewise linear map la
tice. The control starts at time=1000. It can be seen that
all the sites converge to the fixed poit=0.0 successfully.

®
=
()

FIG. 6. Space-time plots of the one-way open coupled
tpiecewise-linear map lattice controlled by dynamic controlles (
=kp=1.8, k,=ky=—4.05). The parameters are seta@s2.5, ¢
=0.1, andv=0.09.

V. CONCLUSIONS _ o _ _
located in the unit circle anfG(z)||.. is less than 1. We

We have shown that the dynamic version of the DDFCprovide a simple systematic procedure for the design of the
method is a useful scheme for suppressing spatial bifurcatiogelayed-feedback controller. Our theoretical results agree
and chaotic behavior in open-flow models. The main resultgvell with the numerical simulations for the coupled logistic
obtained in this paper are shown below: Spatlal bifurcatiorhnd piecewise_”near maps. We p|an in the near future to
and chaotic behavior never occur when the delayed-feedbagkalize our control system on electronic circuits and to show
controller is designed such that the poles@®fz) are all experimental evidence of our system.
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