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Delayed-feedback control of spatial bifurcations and chaos in open-flow models

Keiji Konishi,* Hideki Kokame, and Kentaro Hirata
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A delayed-feedback control scheme is presented for suppressing spatial bifurcation and chaotic behavior in
open-flow models. It is shown that spatial bifurcation and chaotic behavior never occur when the delayed-
feedback controller is designed such that the following two conditions are satisfied: all the poles of the
transfer function of each site are inside a unit circle and theH` norm of the transfer function is less than 1. We
provide a simple systematic procedure for design of the delayed-feedback controller. It is confirmed that our
theoretical results agree well with the numerical simulations.

PACS number~s!: 05.45.Gg, 07.05.Dz, 47.27.Rc, 47.62.1q
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I. INTRODUCTION

Controlling chaos has been actively investigated in
field of nonlinear science@1#. Ott, Grebogi, and Yorke
~OGY! proposed a method which stabilizes chaotic motio
onto desired unstable periodic orbits~UPOs! @2#. The
delayed-feedback control~DFC! method proposed by Pyra
gas@3# does not require a reference signal correspondin
the desired UPO. The DFC method has been widely used
several real systems@1#, since it is a practical scheme fo
experimental situations. The stability of the DFC method
simple low-dimensional chaotic systems has been analy
@4–7#, and a discrete-time version of the method was exa
ined@8–13#. In recent years, investigations of spatiotempo
chaotic behavior and its control have attracted much inte
@14–18#. Konishi, Hirai, and Kokame@15# proposed a decen
tralized delayed-feedback control~DDFC! for a one-way
open coupled map lattice@19–21#. They obtained a stability
condition for the control system to be stable. In order
design robust local controllers for uncertain parameter in
mation, they gave a simple procedure which does not dep
on the system size; however, this procedure takes into
count only the internal stability of each site, but not the no
propagation in the lattice sites.

The dynamics of spatially extended nonlinear syste
consisting of coupled low-dimensional nonlinear maps
created considerable interest@22#. Coupled map lattices
~CMLs! have been particularly investigated by many
searchers, since they exhibit a wide variety of novel a
complex spatiotemporal behaviors. The CMLs can be cla
fied into several types according to the connections
boundary conditions. The one-way open CML is a typic
open-flow model@19–21#. Spatial bifurcations in the CML
were discovered@19#, and have been studied in detail in n
merical simulations@20,21#. Yamaguchi investigated th
phenomenon of spatial bifurcations in the CML and deriv
the bifurcation conditions@23#. Very recently, the spatial bi
furcation condition and its mechanism in open-flow mod
were clarified by theH`-norm concept of transfer functio
@24#. Reference@24# showed that spatial bifurcation neve
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occurs when theH` norm is less than 1.
From the practical point of view, spatial bifurcation an

chaotic behavior in real open-flow systems, such as turbu
behavior in pipe flows, are undesirable because of com
cated and unpredictable oscillations. Therefore, we no
that suppression of spatial bifurcation and chaotic beha
will be an important subject. The DDFC method can su
press chaotic behavior in the one-way open CML unde
noiseless environment@15#. However, it has the following
three disadvantages:~1! it is not suitable for suppression o
chaotic behavior under a noisy environment,~2! it cannot
suppress spatial bifurcation, and~3! it cannot stabilize a class
of open-flow models due to the inherent weak point of t
DFC @8–13#. The present paper modifies the DDFC meth
to overcome the above disadvantages. The DDFC met
@15# usesstaticcontrollers which guarantee only the intern
stability of each site; on the contrary, our modified meth
usesdynamiccontrollers in order that each site is internal
stable and theH` norm of each site is less than 1. Furthe
more, we give a systematic procedure for the design of
namic controllers and show that the theoretical results ag
well with numerical simulations.

II. STABILITY OF ONE-WAY OPEN CML

Let us consider a one-way open CML

xi~n11!5~12«! f @xi~n!#1« f @xi 21~n!# ~ i 51,2, . . .!,
~1!

wherexi(n)PR is the system state of thei th lattice site at
time n,«P@0,1) is the coupling strength, andf :R→R is the
local nonlinear map. We assume that the upper bound
x0(n) is fixed atx0(n)5xf , wherexf is the fixed point of
the local mapf, that is,xf5 f @xf #. The steady state of the
CML is

@x1~n! x2~n! x3~n! ¯#T5@xf xf xf ¯#T.
~2!

Assume that the orbits at the upper sites@i.e., 1,2, . . . ,(i
22)th lattice sites# have already converged to the fixed poi
@i.e., xj (n)5xf for j 51,2, . . . ,(i 22)#. If the (i 21)th and
:

fu-
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i th lattice site statesxi 21(n) andxi(n) are in the neighbor-
hood of the fixed pointxf , the linearized dynamics of thei th
lattice site is given as

yi~n11!5~12«!Lyi~n!1«Lyi 21~n!, ~3!

where

yi~n!ªxi~n!2xf , yi 21~n!ªxi 21~n!2xf ,

Lª

] f ~x!

]x U
x5xf

.

The Z transforms@25# of yi(n11), yi(n), andyi 21(n) are
given, respectively, by

Z@yi~n11!#5zYi~z!, Z@yi~n!#5Yi~z!,

Z@yi 21~n!#5Yi 21~z!.

Taking theZ transforms of both sides of Eq.~3!, we obtain

zYi~z!5~12«!LYi~z!1«LYi 21~z!.

The relation ofYi(z) andYi 21(z) is described as

Yi~z!5G~z!Yi 21~z!, ~4!

where the transfer functionG(z) is

G~z!5
«L

z2~12«!L
. ~5!

Let us recall the definitions ofH` norm and of temporally
spatially stability given in@24#.

Definition 1 @26#. Assume that a transfer functionF(z)
has no poles outside of unit circle on complex plain.H`

norm of the transfer functionF(z) is given by

iF~z!i`ª max
uP@0,2p#

uF~ej u!u.

Definition 2 @24#. The spatiotemporal stability of stead
state ~2! in one-way open CML~1! is classified into the
following three types:

~i! If G(z) has a pole outside of the unit circle, it is tem
porally unstable~TU!.

~ii ! If G(z) has a pole inside of the unit circle and theH`

norm of G(z) is less than 1~i.e., iG(z)i`,1), it is tempo-
rally spatially stable~TSS!.

~iii ! If G(z) has a pole inside of the unit circle and theH`

norm ofG(z) is greater than 1~i.e., iG(z)i`.1), it is tem-
porally stable and spatially unstable~TSSU!.

It is obvious that spatial bifurcation occurs in the one-w
open CML only when steady state~2! is TSSU. This is be-
cause, if steady state~2! is TSSU, a tiny external noise in rea
systems or round-off error on computers at the upper s
significantly disturbs the lower sites. Hence the lower latt
site statesxi(n) cannot keep staying onxf . Furthermore, we
can observe chaotic behaviors in the CML when steady s
~2! is TU. The main purpose of this paper is to provide
control scheme which changes the stability of steady state~2!
from TSSU/TU to TSS.
s
e

te

III. STABILIZATION OF THE STEADY STATE

We notice that spatial bifurcation and chaotic behavior
observed in the one-way open CML when steady state~2! is
TSSU or TU.

In order to suppress spatial bifurcation and chaotic beh
ior, we add a control termui(n) to the right-hand side of Eq
~1!:

xi~n11!5~12«! f @xi~n!#1« f @xi 21~n!#1ui~n!

~ i 51,2, . . .!. ~6!

The control signalui(n) is given by

wi~n11!5kawi~n!1kb@xi~n!2xi~n21!#,

ui~n!5kcwi~n!1kd@xi~n!2xi~n21!#, ~7!

where ka ,kb ,kc ,kdPR are the feedback gains. Since th
variable wi(n)PR is the internal state variable of thei th
controller at timen, it does not represent any physical value
In the field of control theory, most of the controllers usua
employ such a variable to extend the dynamics of the c
trollers. We remark that controller~7! never changes the lo
cation of steady state~2!. Figure 1 illustrates the one-wa
open CML with controller~7!. This paper employs ady-
namicdelayed-feedback controller~7! instead of astaticcon-
troller ~i.e., ka5kb5kc50) used in@15#. Controller~7! can
be regarded as a decentralized dynamic delayed-feed
controller proposed in@27,28#. The resulting closed-loop sys
tem consisting of system~6! and controller~7! can be linear-
ized as

F yi~n11!

yi~n!

wi~n11!
G5F ~12«!L1kd 2kd kc

1 0 0

kb 2kb ka

G F yi~n!

yi~n21!

wi~n!
G

1F «L
0
0

G yi 21~n!. ~8!

The relation between Yi(z)ªZ@yi(n)# and Yi 21(z)
ªZ @yi 21(n)# of system~8! is

Yi~z!5Ḡ~z!Yi 21~z!. ~9!

The transfer functionḠ(z) is given as

Ḡ~z!5
N~z!

D~z!
,

where

N~z!5z~z2ka!«L,

FIG. 1. One-way open CML with the decentralized controlle
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D~z!5z32$~12«!L1ka1kd%z
21$kd1kakd2kbkc

1ka~12«!L%z1kbkc2kakd .

We notice that relation~9! corresponds to Eq.~4!. Since the
difference between Eqs.~9! and~4! is only the degree of the
transfer functionsG(z) and Ḡ(z), definition 2 can be ex-
tended to the controlled CML consisting Eqs.~6! and ~7!.

Definition 3. The spatiotemporal stability of steady sta
~2! in the CML controlled by Eqs.~7! is classified into the
following three types.

~i! If Ḡ(z) has at least one pole outside of the unit circ
it is TU.

~ii ! If all the poles ofḠ(z) are inside of the unit circle and
iḠ(z)i`,1, it is TSS.

~iii ! If all the poles ofḠ(z) are inside of the unit circle
and iḠ(z)i`.1, it is TSSU.

In general, it is not easy to determine the feedback ga
such that steady state~2! becomes TSS. This paper sha
provide a simple systematic procedure how to determine
feedback gains for suppression of spatial bifurcation and
stabilization of chaotic behavior. If we choose the feedba
gains as

ka5kb5
~12«!L

~12«!L21
, kc5kd52

~12«!2L2

~12«!L21
,

~10!

then the transfer functionḠ(z) can be reduced to

Ḡ~z!5
«Lz~z2ka!

z3 . ~11!

The closed-loop system consisting of Eqs.~6! and~7! shows
deadbeat behavior, since all the poles ofḠ(z) are zero. The
H` norm of Ḡ(z) is

iḠ~z!i`5 max
uP@0,2p#

U«Lej u~ej u2ka!

ej 3u U
5u«Lu max

uP@0,2p#

uej u2kau

5u«Lu max
uP@0,2p#

Aka
222kacosu11.

Hence, theH` norm of Ḡ(z) can be given by

iḠ~z!i`5H u«L~11ka!u if ka>0,

u«L~12ka!u if ka<0.

Spatial bifurcation and chaotic behavior do not occur in
CML only when iḠ(z)i`,1. From the above results, w
can provide a systematic procedure for design of the fe
back gains

~1! The information~L,«! is known and the gainka is
estimated from Eq.~10!.

~2! If ka>0, then go to step~3!; if ka<0, then go to step
~4!.
,

s

e
r
k

e
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~3! If u«L(11ka)u,1, then go to step~5!: otherwise,
stop.

~4! If u«L(12ka)u,1, then go to step~5!: otherwise,
stop.

~5! The feedback gains are chosen as Eqs.~10!.
After step ~5!, the steady state of the controlled CM

becomes TSS. It should be noted that even if we can
reach step~5!, the steady state may become TSS by ga
other than Eqs.~10!.

IV. NUMERICAL EXAMPLES

A. Suppression of spatial bifurcation

We use the logistic mapf (x)5ax(12x) as the local non-
linear map. The fixed point is described asxf5(a21)/a;
thus, we obtainL522a. The system parameter and co
pling strength are fixed at (a,«)5(3.2,0.55). The system
size isN550. Figure 2~a! shows the spatial bifurcation dia
gram without control. In order to neglect the transient beh
ior, xi(n) is plotted forn549 980, 49 981, . . . ,50000. Ini-
tial conditions arexi(0)5xf for i 51,2, . . . ,500. A tiny
random noise is added to the upper boundary site:x0(n)
5xf11025hn , wherehnP@21,11# is the uniform random
value. As one can see, we can observe spatial bifurcatio
the CML. The gain diagram of the transfer functionG(z) is
shown in Fig. 2~b!. It can be seen that the maximum gain—
that is, iG(z)i`—is greater than 1, and the pole ofG(z)
@i.e., z5(12«)L# is inside of the unit circle. Since stead
state~2! is TSSU, we can see the spatial bifurcation as sho
in Fig. 2~a!.

Now we shall suppress the spatial bifurcation using d
namic delayed-feedback control~7!. It is undesirable for the
control signal to be large, since a large signal may make
control system fall into a divergence regime. In order
avoid the divergence, we employ a local watcher for ev
site @15#. Each local watcher is described as

FIG. 2. Spatial bifurcation and gain diagrams without contr
The parameters are fixed ata53.2,«50.55.~a! Spatial bifurcation
diagram.~b! Gain diagram ofG(z).
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ui~n!5H ui~n! if uui~n!u<n,

0 if uui~n!u.n,

where the thresholdn is a small positive value. The param
eters and the noise are the same as Fig. 2. The feedback
are chosen by our systematic procedure~i.e., ka5kb
50.350 65,kc5kd520.189 35). The watcher threshold
set asn50.01. Figure 3~a! shows the spatial bifurcation dia
gram with control. The control starts at timen510 000. We
cannot see spatial bifurcation in the CML. The gain diagr
of the transfer function of the closed-loop systemḠ(z) is
shown in Fig. 3~b!. Since iḠ(z)i` is less than 1 and the
poles of Ḡ(z) are inside the unit circle, the steady state
TSS. Figure 4 shows the spatiotemporal behavior of the c
trolled CML. The parameters, noise, and gains are the s
as Fig. 3. The control starts at timen5200. We can observe
that site statesxi(n) converge onxf in the order of the site
numberi.

B. Stabilizing chaotic behavior

Let us consider two numerical examples. First of all,
use a logistic map as the local nonlinear map. The sys

FIG. 3. Spatial bifurcation and gain diagrams with control. T
parameters are the same as in Fig. 2.~a! Spatial bifurcation dia-

gram.~b! Gain diagram ofḠ(z).

FIG. 4. Space-time plot of the controlled one-way open CM
with logistic maps. The parameters, noise, and gains are the sam
in Fig. 3.
ins

n-
e
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parameter and coupling strength are fixed at (a,«)
5(3.91,0.1). The system size isN5100. The fixed point is
xf50.7442. From definition 2, we notice that steady state~2!
is TU. The initial conditions and the tiny random noise a
the same as Fig. 3. Spatiotemporal chaotic behavior occu
the CML without control. Now we shall try to stabilize th
chaotic behavior by the following controllers: the sta
delayed-feedback controller proposed in@15# @i.e., controller
~7! with ka5kb5kc50# and dynamic delayed-feedback co
troller ~7!. The static controller is set aska5kb5kc50 and
kd50.9, which satisfies the stability condition in@15#. On the
other hand, the feedback gains of dynamic controller~7! are
chosen by our systematic procedure in Sec. III~i.e., ka5kb
50.6322,kc5kd51.0868). The watcher threshold is set
n50.05. Figure 5~a! shows the spatiotemporal behavior
the CML controlled by the static controller. The contr
starts at timen51000. The upper sites statesxi(n) converge
on xf ; however, the lower sites behave chaotically. This
because the stability analysis in@15# does not consider nois
propagation. Figure 5~b! is the spatiotemporal behavior o
the CML controlled by dynamic controller~7!. It can be seen
that all sites converge on the fixed pointxf in the order of the
site numberi. The reason for our successful stabilization
that the feedback gains (ka ,kb ,kc ,kd) of dynamic controller
~7! are designed such that theH` norm of Ḡ(z) is less than
as

FIG. 5. Space-time plots of the one-way open coupled logi
map lattice controlled by~a! static controller (ka5kb5kc50, kd

50.9) and ~b! dynamic controller (ka5kb50.6322, kc5kd

51.0868). The parameters are set asa53.91, «50.1, and n
50.05.
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1. In other words, they are designed in consideration of
noise propagation in the lattice sites.

For the second example, we use a piecewise linear
f (x)5a(x11) if x<20.5, ax if uxu<0.5, anda(x21) if
0.5<x, wherea is the system parameter. The fixed point
xf50; thus, we obtainL5a. The system parameter an
coupling strength are fixed at (a,«)5(2.5,0.1). The system
size isN5100. SinceL is greater than 1, we notice that th
original DDFC ~i.e., static delayed-feedback control! never
stabilizes steady state~2! due to the inherent weak point o
the DFC~see Fig. 1 in@15#!. On the contrary, forL52.5 and
«50.1, we can reach step~5! in our controller-design proce
dure. This implies that the controller designed our proced
can stabilize steady state~2!. Figure 6 shows the space-tim
diagram of the controlled coupled piecewise linear map
tice. The control starts at timen51000. It can be seen tha
all the sites converge to the fixed pointxf50.0 successfully.

V. CONCLUSIONS

We have shown that the dynamic version of the DD
method is a useful scheme for suppressing spatial bifurca
and chaotic behavior in open-flow models. The main res
obtained in this paper are shown below: Spatial bifurcat
and chaotic behavior never occur when the delayed-feedb
controller is designed such that the poles ofḠ(z) are all
e

ry

s

e

ap

re

t-

n
ts
n
ck

located in the unit circle andiḠ(z)i` is less than 1. We
provide a simple systematic procedure for the design of
delayed-feedback controller. Our theoretical results ag
well with the numerical simulations for the coupled logist
and piecewise-linear maps. We plan in the near future
realize our control system on electronic circuits and to sh
experimental evidence of our system.

FIG. 6. Space-time plots of the one-way open coup
piecewise-linear map lattice controlled by dynamic controller (ka

5kb51.8, kc5kd524.05). The parameters are set asa52.5, «
50.1, andn50.09.
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